
Several 1,3-dithia-2-silacyclopent-4-ene (dithiasilole)
derivatives were prepared by the reactions of cis-
NaS–HC=CH–SNa with the corresponding dichlorosilanes.
The compounds formed charge-transfer (CT) complexes with
tetracyanoethylene in CH2Cl2.  The UV–vis spectra of the CT
complexes indicated that the ionization potential of 2,2-
bis(trimethylsilyl)dithiasilole was smaller than that of 2,2-
dimethyldithiasilole.  The results were explained by the
σ(Si–R)–π interactions resulting in a higher HOMO level.  Ab
initio MO calculations supported the experimental results.

Silacyclopentadienes (siloles) have been receiving atten-
tion for their unique photophysical properties, which originate
from low-lying LUMOs due to the interaction between σ(Si–R)
and π*(diene) orbitals.1,2 However, the chemistry of 1,3-dithia-
2-silacyclopent-4-ene (dithiasilole) derivatives has rarely been
investigated.3 Only 2,2-dimethyldithiasilole was prepared by
Satgé et al. in 1988.3

It was assumed that dithiasilole did not have low-lying
LUMOs because the  σ*–π* interaction was not allowed by the
symmetry of molecular orbitals.  However, the orbital interac-
tion between the π(S–C=C–S) system and σ(R–Si–R) bonds
was thought to raise the HOMO level of the compound.  We
will report here the preparation and properties of 2,2-
bis(trimethylsilyl)dithiasilole and their related compounds.  Ab
initio MO calculations were also made to investigate the char-
acteristics of the compounds.  

The reactions of cis-NaS–HC=CH–SNa (2) with the corre-
sponding 2,2-dichlorotrisilanes in THF under reflux gave 2,2-
bis(t-butyldimethylsilyl)dithiasilole (1a)4 and 2,2-bis(trimethyl-
silyl)dithiasilole (1b)5 in 44% and 37% yields, respectively, as
shown in Scheme 1.  Disilanes 1c6 and 1d7 and monosilane 1e3

were also obtained in a similar manner.  The compounds 1a–e
gradually decomposed in air, but can be kept without decompo-
sition under an argon atmosphere for several weeks. 

The UV spectra of 1a–e in cyclohexane are shown in
Figure 1.  Except for monosilane 1e, the compounds exhibited
broad absorption at 250–300 nm.  The bathochromic shift was
ascribed to the rise of the HOMO levels of the compounds due
to the σ(Si–Si)–π interaction described above.  It is notable that
1a showed a significant red-shifted absorption at 278 nm,
which was tailed into 380 nm.  The steric hindrance between
the two bulky silyl groups would increase the Si–Si–Si angle
and reinforce the σ–π interaction. 

It is well-known that oligosilanes form charge-transfer
(CT) complexes with tetracyanoethylene (TCNE),8,9 and their
CT energies have a linear relationship with the ionization
potentials (IPs) of oligosilanes (eq 1).9

To estimate the IPs of 1a–e, the absorption maxima of the
CT complexes of 1a–e with TCNE in CH2Cl2 were measured
(Figure 2).  IPests of 1a–e were estimated using eq 1 and sum-
marized in Table 1.  IPest increased in the order 1a < 1b < 1c <
1d < 1e.  This means that the introduction of silyl substituents
into the dithiasilole skeleton was effective in raising the HOMO
levels.  The higher IPest of 1a than that of 1b should stem from
the more effective interactions between σ(Si–Si) bond and π
orbital in 1a due to the steric effects described above.

Non-empirical MO calculations of the dithiasilole deriva-
tives were made at the B3LYP/6-31G* level.  The calculated
structure of the 5-membered ring in 1e was almost planar.
However, slightly deformed, envelope-type structures were
found in 1b and 1d.  The S–Si–S–C dihedral angles were 7.3°,
12.2°, and 0.0° for 1b, 1d, and 1e, respectively.  Figure 3 shows
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the HOMOs of 1e and 1b.  Apparently, the contribution of the
σ(Si–Si) orbitals in 1b was larger than that of the σ(Si–Me)
orbitals in 1e.

The IPs and electron affinities (EAs) of 1b, 1d, and 1e
were calculated using ab initio MO method with the Outer
Valence Green’s Function (OVGF) propagator method.9,10 The
results are listed in Table 1.  Compound 1a was too large to cal-
culate the IP and EA at the same level of calculation under our
computational conditions.  Although the LUMO levels of 1b,
1d, and 1e were almost the same (0.90–0.91 eV), the HOMO
levels rose when the silyl substituent was introduced into the
dithiasilole ring.  This is consistent with the IPest values experi-
mentally obtained from the CT complexes with TCNE.  

We expect that the π-systems including 2,2-bis(silyl)dithia-
silole will be useful materials with high-lying HOMO levels.
Further experimental and theoretical studies are in progress.  
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